딥러닝

🤖 Today-I-Learned ]/Deep Learning

[NLP] 단어부터 문장까지 GloVe Embedding / Clustering

[NLP] 단어부터 문장까지 GloVe Embedding 하기 / Clustering 까지 워드 임베딩 방법론 중 하나인 GloVe에 대해서 직접 임베딩하는 과정을 알아보겠습니다. 단어 단위로 임베딩하고 문장 단위의 임베딩으로 바꾼 후 clustering 까지 하는 과정을 담았습니다. 제가 실제로 해커톤과 프로젝트에 이용한 방법들을 기준으로 합니다. 저는 주로 한국어 문장을 단어(토큰) 별로 피쳐로 바꿔서 이용하기 위해서 GloVe로 임베딩 하는 과정을 사용했습니다. (한국어 데이터들을 사용했습니다.) GloVe 모델 자체에 대한 자세한 설명은 아래 블로그 글을 참고해주세요. 저는 GloVe가 Word2Vec 과 같은 워드 임베딩 방법론 중에 통계 정보 를 추가한 방법론이라고 설명하고 넘어가겠습니다. G..

🤖 Today-I-Learned ]/Statistics & Machine Learning

[선형대수] 딥러닝에서의 일대일 대응 (ONE-TO-ONE)

[선형대수] 딥러닝에서의 일대일대응 (ONE-TO-ONE) Neural Networks : ONE-TO-ONE 그냥 들으면 전혀 상관없을 것 같은, 중학교 때 부터 배운 일대일 대응은 딥러닝의 정보 손실과 딥러닝의 설명할 수 없는 블랙박스 모델의 특성과 관련이 있다. 일대일대응이란 함수에서 정의역의 화살을 맞은 치역들이 화살을 한번 씩만 맞았어야한다는 것이다. (추상적이어도 이게 이해하기 쉬워서 풀어서 이렇게 적는다.) 따라서 3차원에서 2차원으로 가는 것과 같은 정의역(input)의 차원이 더 큰 경우는 일대일 대응이 될 수 없다. 이러한 성질을 Neural Network 와 연관지어 본다면, input 이 hidden node 를 거쳐서 output으로 나오는 일련의 과정은 output 예측을 위해서..

🤖 Today-I-Learned ]/Statistics & Machine Learning

[선형대수] 딥러닝에서 선형변환의 기하학적 의미

딥러닝에서 선형변환의 기하학적 의미 Linear Transformation in Neural Networks 딥러닝에서 선형변환의 기하학적 의미는 다음과 같이 시각화한 gif 로 한장으로 볼 수 있다. 원래의 모눈종이가 standard basis들이라고 하면 ([1,0].T , [0,1].T) 모눈종이가 점점 기울어진 평행사변형이 되는 것이 linear transform (선형변환) 이고, 곡선으로 꾸겨지는 부분은 non linear 함수를 사용했을 때의 모습이다. (이 때 0 부분은 거의 그대로 유지되는 모숩을 볼 수 있다.) 흐르는 것은 bias 를 표현한 것이다. 이러한 일련의 과정이 딥러닝의 node에서 이루어지고 있는 모습을 시각화 한 것이다. Affine Layer 추가로 bias 를 포함한 ..

🤖 Today-I-Learned ]/Deep Learning

[논문 리뷰] Deep Residual Learning for Image Recognition - ResNet(1)

ResNet ResNet 이라는 이름으로 더 유명한 논문을 리뷰해보겠습니다. 최고의 빅데이터 분석 동아리 '투빅스' 과제 겸사겸사 하는 리뷰입니다. (사실 이게 아니라 구현 과제를 해야되는데 어렵네요....) 논문 흐름대로 리뷰되었습니다. https://arxiv.org/pdf/1512.03385.pdf https://arxiv.org/pdf/1603.05027.pdf Abstract 딥러닝에서 neural networks가 깊어질수록 성능은 더 좋지만 train이 어렵다는 것은 알려진 사실입니다. 그래서 이 논문에서는 잔차를 이용한 잔차학습 (residual learning framework)를 이용해서 깊은 신경망에서도 training이 쉽게 이뤄질 수 있다는 것을 보이고 방법론을 제시했습니다. We..

지니티토리
'딥러닝' 태그의 글 목록