Machine learning

🤖 Today-I-Learned ]/Statistics & Machine Learning

[선형대수] Orthogonal Projection ŷ of y

Orthogonal Projection ŷ of y (y의 정사영 y-hat) y의 Orthogonal Projection 값 ŷ 을 구하는 방법을 알아보자. 1. [2차원에서의 설명] Orthogonal Projection ŷ of y onto Line Line L에 Orthogonal projection (사영) 시키는 경우는 다음과 같다. ŷ 의 값을 구하기 위해서는 ŷ 의 길이와 ŷ 의 방향을 곱한다. y의 길이는 y norm 이다. (||y||) ŷ 의 길이는 ||y|| cosθ이기 때문에 y와 u의 내적에서 유도한다. 방향은 u 벡터의 방향에서 유도한다. u 의 unit vector(단위벡터) 를 구하면, 길이는 1이면서 방향만 남는다. 길이 x 방향 을 해주면 2번과 3번을 곱한..

🤖 Today-I-Learned ]/Statistics & Machine Learning

[선형대수] 머신러닝에서 Rank of Matrix 의 의미

머신러닝 (Machine Learning)에서 Rank of Matrix 의 의미 선형대수에서 rank의 의미는 다음과 같다. Definition : The rank of a matrix A, denoted by rank A, is the dimension of the column space of A: rank A = dim Col A 이는 Col A 의 dimension이 rank A 라는 것이다. (이 때 dimension은 기저백터(basis)의 갯수로 유니크하다.) 이러한 Rank가 Machine Learning에서 의미하는 바는 다음과 같은 예시로 나타낼 수 있다. 다음과 같이 키 몸무게 등의 feature(column)으로 이루어진 데이터셋이 있을 때, 극단적으로 V2, V3, V4가 모두 V..

🤖 Today-I-Learned ]/Deep Learning

[논문 리뷰] Deep Residual Learning for Image Recognition - ResNet(1)

ResNet ResNet 이라는 이름으로 더 유명한 논문을 리뷰해보겠습니다. 최고의 빅데이터 분석 동아리 '투빅스' 과제 겸사겸사 하는 리뷰입니다. (사실 이게 아니라 구현 과제를 해야되는데 어렵네요....) 논문 흐름대로 리뷰되었습니다. https://arxiv.org/pdf/1512.03385.pdf https://arxiv.org/pdf/1603.05027.pdf Abstract 딥러닝에서 neural networks가 깊어질수록 성능은 더 좋지만 train이 어렵다는 것은 알려진 사실입니다. 그래서 이 논문에서는 잔차를 이용한 잔차학습 (residual learning framework)를 이용해서 깊은 신경망에서도 training이 쉽게 이뤄질 수 있다는 것을 보이고 방법론을 제시했습니다. We..

지니티토리
'Machine learning' 태그의 글 목록