[선형대수] 딥러닝에서의 일대일대응 (ONE-TO-ONE) Neural Networks : ONE-TO-ONE 그냥 들으면 전혀 상관없을 것 같은, 중학교 때 부터 배운 일대일 대응은 딥러닝의 정보 손실과 딥러닝의 설명할 수 없는 블랙박스 모델의 특성과 관련이 있다. 일대일대응이란 함수에서 정의역의 화살을 맞은 치역들이 화살을 한번 씩만 맞았어야한다는 것이다. (추상적이어도 이게 이해하기 쉬워서 풀어서 이렇게 적는다.) 따라서 3차원에서 2차원으로 가는 것과 같은 정의역(input)의 차원이 더 큰 경우는 일대일 대응이 될 수 없다. 이러한 성질을 Neural Network 와 연관지어 본다면, input 이 hidden node 를 거쳐서 output으로 나오는 일련의 과정은 output 예측을 위해서..
딥러닝에서 선형변환의 기하학적 의미 Linear Transformation in Neural Networks 딥러닝에서 선형변환의 기하학적 의미는 다음과 같이 시각화한 gif 로 한장으로 볼 수 있다. 원래의 모눈종이가 standard basis들이라고 하면 ([1,0].T , [0,1].T) 모눈종이가 점점 기울어진 평행사변형이 되는 것이 linear transform (선형변환) 이고, 곡선으로 꾸겨지는 부분은 non linear 함수를 사용했을 때의 모습이다. (이 때 0 부분은 거의 그대로 유지되는 모숩을 볼 수 있다.) 흐르는 것은 bias 를 표현한 것이다. 이러한 일련의 과정이 딥러닝의 node에서 이루어지고 있는 모습을 시각화 한 것이다. Affine Layer 추가로 bias 를 포함한 ..